Acyclic edge coloring of sparse graphs
نویسندگان
چکیده
A proper edge coloring of a graph G is called acyclic if there is no bichromatic cycle in G. The acyclic chromatic index of G, denoted by χa(G), is the least number of colors k such that G has an acyclic edge k-coloring. The maximum average degree of a graph G, denoted by mad(G), is the maximum of the average degree of all subgraphs of G. In this paper, it is proved that if mad(G) < 4, then χa(G) ≤ ∆(G) + 2; if mad(G) < 3, then χ ′ a(G) ≤ ∆(G) + 1. This implies that every triangle-free planar graph G is acyclically edge (∆(G) + 2)-colorable.
منابع مشابه
A new approach to compute acyclic chromatic index of certain chemical structures
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...
متن کاملAcyclic 3-Colorings and 4-Colorings of Planar Graph Subdivisions
An acyclic coloring of a graph G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the same color and every cycle in G has vertices of at least three different colors. An acyclic k-coloring of G is an acyclic coloring of G with at most k colors. It is NP-complete to decide whether a planar graph G with maximum degree four admits an acyclic 3-coloring [1]...
متن کاملAcyclic Edge-coloring of Sierpinski-like Graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by χ′a(G). Sierpinski graphs S(n, 3) are the graphs of the Tower of Hanoi with n disks, while Sierpinski gasket graphs Sn are the graphs naturally defined ...
متن کاملAcyclic edge coloring of subcubic graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using 5 colors. This result is tight since there are...
متن کاملAcyclic chromatic index of triangle-free 1-planar graphs
An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index χa(G) of a graph G is the least number of colors in an acyclic edge coloring of G. It was conjectured that χa(G) ≤ ∆(G) + 2 for any simple graph G with maximum degree ∆(G). A graph is 1-planar if it can be drawn on the plane such that every edg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 312 شماره
صفحات -
تاریخ انتشار 2012